Abstract

Epicardial fat (EF) is an active ectopic fat depot, which has been associated with coronary atherosclerosis, and which could early influence endothelial function. We thus investigated the relationship between EF and endothelium-dependent vasoreactivity of the coronary microcirculation, in highly selected healthy volunteers. Myocardial blood flow (MBF) was determined by measuring coronary sinus flow with velocity-encoded cine magnetic resonance imaging (MRI) at 3T. We measured MBF at baseline and in response to sympathetic stimulation by cold pressor testing (CPT) in 30 healthy volunteers with normal left ventricular (LV) function (age 22 ± 4 years, BMI = 21.3 ± 2.8 kg/m(2)). EF volume was volumetrically assessed by manual delineation on short-axis views. CPT was applied by immersing one foot in ice water for 4 min. Mean EF volume was 56 ± 26 ml and mean LV mass 100 ± 28 g. CPT significantly increased heart rate (HR) by 32 ± 19%, systolic blood pressure by 14 ± 10%, and rate-pressure product by 45 ± 25%, P < 0.0001. The increase in HR, reflecting sympathetic stimulation, was not influenced by sex, age or EF volume. CPT induced a decrease in coronary vascular resistance (135 ± 72 vs. 100 ± 42 mm Hg.ml(-1).min.g, P = 0.0006), and a significant increase in MBF (0.81 ± 0.37 vs. 1.24 ± 0.56 ml.min(-1).g(-1), P < 0.0001). Interestingly, we found a significant negative correlation between EF volume and ΔMBF (r= - 0.40, P = 0.03), which remained significant after adjusting for ΔHR. ΔMBF was also associated with adiponectin (r = 0.41, P = 0.046), but not with waist circumference, BMI, C-reactive protein, lipid or glycemic parameters. In multivariate analysis, adiponectin and EF volume remained both independently associated with ΔMBF. A high EF amount is associated with a lower coronary microvascular response, suggesting that EF could early influence endothelial function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.