Abstract

Temozolomide (TMZ) treatment efficacy in glioblastoma (GBM) has been limited by resistance. The level of O-6-methylguanine-DNA methyltransferase (MGMT) and intrinsic DNA damage repair factors are important for the TMZ response in patients. Here, we reported a novel compound, called EPIC-0307, that increased TMZ sensitivity by inhibiting specific DNA damage repair proteins and MGMT expression. EPIC-0307 was derived by molecular docking screening. RNA immunoprecipitation (RIP), and chromatin immunoprecipitation by RNA (ChIRP) assays were used to verify the blocking effect. Chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP) assays were performed to explore the mechanism of EPIC-0307. A series of in vivo and in vitro experiments were designed to evaluate the efficacy of EPIC-0307 in sensitizing GBM cells to TMZ. EPIC-0307 selectively disrupted the binding of PRADX to EZH2 and upregulated the expression of P21 and PUMA, leading to cell cycle arrest and apoptosis in GBM cells. EPIC-0307 exhibited a synergistic inhibitory effect on GBM when combined with TMZ by downregulating TMZ-induced DNA damage repair responses and epigenetically silencing MGMT expression through modulating the recruitment of ATF3-pSTAT3-HDAC1 regulatory complex to the MGMT promoter. EPIC-0307 demonstrated significant efficacy in suppressing the tumorigenesis of GBM cells, restoring TMZ sensitivity. This study identified a potential small-molecule inhibitor (SMI) EPIC-0307 that selectively disrupted the PRADX-EZH2 interaction to upregulate expressions of tumor suppressor genes, thereby exerting its antitumor effects on GBM cells. EPIC-0307 treatment also increased the chemotherapeutic efficacy of TMZ by epigenetically downregulating DNA repair-associate genes and MGMT expression in GBM cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call