Abstract
Evaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in vivo and on a tissue mimicking gel. Three 2D protocols were investigated (an SE-GRE, single-shot EPI, and an averaged single-shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer at lower field-strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision. The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE-GRE protocol. While SE-GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid-field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.