Abstract

BackgroundTranscranial magnetic stimulation (TMS) can be paired with functional magnetic resonance imaging (fMRI) in concurrent TMS-fMRI experiments. These multimodal experiments enable causal probing of network architecture in the human brain which can complement alternative network mapping approaches. Critically, merely introducing the TMS coil into the scanner environment can sometimes produce substantial magnetic field inhomogeneities and spatial distortions which limit the utility of concurrent TMS-fMRI. Method and resultsWe assessed the efficacy of point spread function corrected echo planar imaging (PSF-EPI) in correcting for the field inhomogeneities associated with a TMS coil at 3 T. In phantom and brain scans, we quantitatively compared the coil-induced distortion artifacts measured in EPI scans with and without PSF correction. We found that the application of PSF corrections to the EPI data significantly improved signal-to-noise and reduced distortions. In phantom scans with the PSF-EPI sequence, we also characterized the temporal profile of dynamic artifacts associated with TMS delivery and found that image quality remained high as long as the TMS pulse preceded the RF excitation pulses by at least 50 ms. Lastly, we validated the PSF-EPI sequence in human brain scans involving TMS and motor behavior as well as resting state fMRI scans. ConclusionsOur collective results demonstrate the potential benefits of PSF-EPI for concurrent TMS-fMRI when coil-related artifacts are a concern. The ability to collect high quality resting state fMRI data in the same session as the concurrent TMS-fMRI experiment offers a unique opportunity to interrogate network architecture in the human brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.