Abstract

Simple SummaryCarcinoma associated fibroblasts (CAF) play a critical role in the tumor microenvironment (TME) of prostate cancer (PCa). Ephrin receptors (Eph) and ligands (EFN) have been implicated in distinct types of cancers. Alterations on EphB receptors are frequently found in PCa, but the role of ligands (EFNB1, EFNB2, EFNB3) activation in prostate fibroblasts and consequent effects on PCa is not known. We found increased EFNB ligands in fibroblasts isolated from PCa tissues. In this study, we assessed the effects of elevated stromal EFNB ligands on PCa tumor growth. Increased EFNB1 and EFNB3 expression transformed normal fibroblasts into CAF phenotypes through activation of Src family kinases. The secretome of EFNB-expressing CAF increased PCa cell proliferation and promoted TME remodeling. Overall, EFNB activation in CAF may participate in PCa progression via the release of soluble factors that modulate the surrounding tumor environment, which, in turn, promote prostate tumor growth and invasion.Through stromal-epithelial interactions, carcinoma associated fibroblasts (CAF) play a critical role in tumor growth and progression. Activation of erythrophoyetin-producing human hepatocellular (Eph) receptors has been implicated in cancer. Eph receptor interactions with Ephrin ligands lead to bidirectional signals in the recipient and effector cells. The consequences of continuous reverse Ephrin signaling activation in fibroblasts on prostate cancer (PCa) is unknown. When compared to benign prostate fibroblast, CAF displayed higher expression of Ephrin B1, B2, and B3 ligands (EFNB1, EFNB2, and EFNB3). In this study, we found that continuous activation of EFNB1 and EFNB3 in a benign human prostate stromal cell line (BHPrS1) increased the expression of CAF markers and induced a CAF phenotype. BHPrS1EFNB1 and BHPrS1EFNB3 displayed a pro-tumorigenic secretome with multiple effects on neovascularization, collagen deposition, and cancer cell proliferation, overall increasing tumorigenicity of a premalignant prostate epithelial cell line BPH1 and PCa cell line LNCaP, both in vitro and in vivo. Inhibition of Src family kinases (SFK) in BHPrS1EFNB1 and BHPrS1EFNB3 suppressed EFNB-induced ɑ-SMA (Alpha-smooth muscle actin) and TN-C (Tenascin-C) in vitro. Our study suggests that acquisition of CAF characteristics via SFK activation in response to increased EFNB ligands could promote carcinogenesis via modulation of TME in PCa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call