Abstract

Increasing evidence indicates that the Eph receptors and their ephrin ligands are involved in the regulation of interactions between neurons and astrocytes. Moreover, astrocytic ephrin-A3 reverse signaling mediated by EphA4 receptors is necessary for controlling the abundance of glial glutamate transporters. However, the role of ephrin-A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. In the present study, we found that the EphA4 receptor and its ephrin-A3 ligand, which were distributed in neurons and astrocytes, respectively, in the hippocampus showed a coincident up-regulation of protein expression in the early stage of ischemia. Application of clustered EphA4 decreased the expressions of astrocytic glutamate transporters together with astrocytic glutamate uptake capacity through activating ephrin-A3 reverse signaling. In consequence, neuronal loss was aggravated in the CA1 region of the hippocampus accompanied by impaired hippocampus-dependent spatial memory when clustered EphA4 treatment was administered prior to transient global ischemia. These findings indicate that EphA4-mediated ephrin-A3 reverse signaling is a crucial mechanism for astrocytes to control glial glutamate transporters and prevent glutamate excitotoxicity under pathological conditions. Astrocytic ephrin-A3 reverse signaling mediated by EphA4 receptor is necessary for controlling the abundance of glial glutamate transporters under physiological conditions. However, the role of ephrin-A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. We found EphA4-mediated ephrin-A3 reverse signaling to be a crucial mechanism for astrocytes to control glial glutamate transporters and protect hippocampal neurons from glutamate excitotoxicity under ischemic conditions, this cascade representing a potential therapeutic target for stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.