Abstract

Auditory stimulus representations are dynamically maintained by ascending and descending projections linking the auditory cortex (Actx), medial geniculate body (MGB), and inferior colliculus. Although the extent and topographic specificity of descending auditory corticofugal projections can equal or surpass that of ascending corticopetal projections, little is known about the molecular mechanisms that guide their development. Here, we used in utero gene electroporation to examine the role of EphA receptor signaling in the development of corticothalamic (CT) and corticocollicular connections. Early in postnatal development, CT axons were restricted to a deep dorsal zone (DDZ) within the MGB that expressed low levels of the ephrin-A ligand. By hearing onset, CT axons had innervated surrounding regions of MGB in control-electroporated mice but remained fixed within the DDZ in mice overexpressing EphA7. In vivo neurophysiological recordings demonstrated a corresponding reduction in spontaneous firing rate, but no changes in sound-evoked responsiveness within MGB regions deprived of CT innervation. Structural and functional CT disruption occurred without gross alterations in thalamocortical connectivity. These data demonstrate a potential role for EphA/ephrin-A signaling in the initial guidance of corticofugal axons and suggest that "genetic rewiring" may represent a useful functional tool to alter cortical feedback without silencing Actx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.