Abstract

In the primitive vertebrate gastrula, the boundary between ectoderm and mesoderm is formed by Brachet's cleft. Here we examine Brachet's cleft and its control by Eph/ephrin signaling in Xenopus at the ultrastructural level and by visualizing cortical F-actin. We infer cortical tension ratios at tissue surfaces and their interface in normal gastrulae and after depletion of receptors EphB4 and EphA4 and ligands ephrinB2 and ephrinB3. We find that cortical tension downregulation at cell contacts, a normal process in adhesion, is asymmetrically blocked in the ectoderm by Eph/ephrin signals from the mesoderm. This generates high interfacial tension that can prevent cell mixing across the boundary. Moreover, it determines an asymmetric boundary structure that is suited for the respective roles of ectoderm and mesoderm, as substratum and as migratory layers. The Eph and ephrin isoforms also control different cell-cell contact types in ectoderm and mesoderm. Respective changes of adhesion upon isoform depletion affect adhesion at the boundary to different degrees but usually do not prohibit cleft formation. In an extreme case, a new type of cleft-like boundary is even generated where cortical tension is symmetrically increased on both sides of the boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call