Abstract
This paper presents a deep learning unsupervisedapproach for diffeomorphic image registrationcalled EPDiff-JF-Net. We propose a novel paralleltransport layer to compute the gradients necessaryfor training with adjoint Jacobi fields. We test ourmethod on two independent brain MRI datasets andobtain state-of-the-art results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.