Abstract
Human papillomavirus (HPV) type 16 is the etiologic agent of more than 50% anal/cervical cancers and about 20% oropharyngeal cancers. HPV16 E6 and E7 oncogenes favor the transformation and are essential for maintaining the transformed status. Serum anti-E6 and anti-E7 antibodies appear to have prognostic significance for HPV-associated cancers. However, most of the previous attempts to establish diagnostic tools based on serum detection of E6 and/or E7 antibodies have been unsuccessful, mainly due to the low accuracy of applied tests. This paper reports on a feasibility study to prove the possibility to easily immobilize HPV16 E7 onto electrospun substrates for application in diagnostic tools. In this study, poly(ε-caprolactone) electrospun scaffolds (called ePCL) are used to provide a microstructured substrate with a high surface-to-volume ratio, capable of binding E7 proteins when used for enzyme-linked immunosorbent assay (ELISA) tests. ePCL functionalized with E7 exhibited superior properties compared to standard polystyrene plates, increasing the detection signal from serum antibodies by 5-6 times. Analysis of the serum samples from mice immunized with HPV16 E7 DNA vaccine showed higher efficiency of this new anti-E7 ePCL-ELISA test vs control in E7-specific antibody detection. In addition, ePCL-E7-ELISA is prepared with a relatively low amount of antigen, decreasing the manufacturing costs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.