Abstract

Blood flow-associated fluid shear stress (FSS) dynamically regulates the endothelium's ability to control arterial structure and function. While arterial endothelial cells (AEC) subjected to high levels of laminar FSS express a phenotype resistant to vascular insults, those exposed to low levels of laminar FSS, or to the FSS associated with oscillatory blood flow, are less resilient. Despite numerous reports highlighting how the cAMP-signaling system controls proliferation, migration and permeability of human AECs (HAECs), its role in coordinating HAEC responses to FSS has received scant attention. Herein we show that the cAMP effector EPAC1 is required for HAECs to align and elongate in the direction of flow, and for the induction of several anti-atherogenic and anti-thrombotic genes associated with these events. Of potential therapeutic importance, EPAC1 is shown to play a dominant role the in response of HAECs to low levels of laminar FSS, such as would be found within atherosclerosis-prone areas of the vasculature. Moreover, we show that EPAC1 promotes these HAEC responses to flow by regulating Vascular Endothelial Growth Factor Receptor-2 and Akt activation, within a VE-cadherin (VECAD)/PECAM1-based mechanosensor. We submit that these findings are consistent with the novel proposition that promoting EPAC1-signaling represents a novel means through which to promote expression of an adaptive phenotype in HAECs exposed to non-adaptive FSS-encoded signals as a consequence of vascular disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.