Abstract

Decreased autophagic flux in cardiomyocytes is an important mechanism by which the β1-adrenoreceptor (β1-AR) autoantibody (β1-AA) induces heart failure. A previous study found that β1-AA imparts its biological effects via the β1-AR/Gs/AC/cAMP/PKA canonical signaling pathway, but PKA inhibition does not completely reverse β1-AA-induced reduction in autophagy in myocardial tissues, suggesting that other signaling molecules participate in this process. This study confirmed that Epac1 upregulation is indeed involved β1-AA-induced decreased cardiomyocyte autophagy through CE3F4 pretreatment, Epac1 siRNA transfection, western blot and immunofluorescence methods. On this basis, we constructed β1-AR and β2-AR knockout mice, and used receptor knockout mice, β1-AR selective blocker (atenolol), and the β2-AR/Gi-biased agonist ICI 118551 to show that β1-AA upregulated Epac1 expression through β1-AR and β2-AR to inhibit autophagy, and biased activation of β2-AR/Gi signaling downregulated myocardial Epac1 expression to reverse β1-AA-induced myocardial autophagy inhibition. This study aimed to test the hypothesis that Epac1 acts as another effector downstream of cAMP on β1-AA-induced reduction in cardiomyocyte autophagy, and β1-AA upregulates myocardial Epac1 expression through β1-AR and β2-AR, and biased activation of the β2-AR/Gi signaling pathway can reverse β1-AA-induced myocardial autophagy inhibition. This study provides new ideas and therapeutic targets for the prevention and treatment of cardiovascular diseases related to dysregulated autophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call