Abstract

Therapeutic interventions used for cancer treatment provoke thymus damage and limit the recovery of protective immunity. Here, we show eosinophils are an essential part of an intrathymic type 2 immune network that enables thymus recovery following ablative therapy. Within hours of damage, the thymus undergoes CCR3-dependent colonisation by peripheral eosinophils, which re-establishes the epithelial microenvironments that control thymopoiesis. Eosinophil regulation of thymus regeneration occurs via the concerted action of NKT-cells that trigger CCL11 production via IL4 receptor signalling in thymic stroma, and ILC2 that represent an intrathymic source of IL5, a cytokine that therapeutically boosts thymus regeneration following damage. Collectively, our findings identify an intrathymic network composed of multiple innate immune cells that restores thymus function during re-establishment of the adaptive immune system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call