Abstract

The glycoprotein gp91(phox) is an essential component of the phagocyte NADPH oxidase and is expressed in eosinophils, neutrophils, monocytes, and B-lymphocytes. We previously suggested an eosinophil-specific mechanism of gp91(phox) gene expression. To elucidate the mechanism, we performed functional assays on deletion mutants of the gp91(phox) promoter in various types of gp91(phox)-expressing cells. A 10-base pair (bp) region from bp -105 to -96 of the promoter activated transcription of the gene in eosinophilic cells, but not in neutrophilic, monocytic, or B-lymphocytic cells. A 2-bp mutation introduced into the GATA site spanning bp -101 to -96 (-98GATA site) of the fragment abolished its activity. Gel shift assays using a GATA competitor and specific antibodies demonstrated that both GATA-1 and GATA-2 specifically bound to the -98GATA site with similar affinities. Individual transfection of GATA-1 and GATA-2 into Jurkat cells, which have neither endogenous GATA-1 nor GATA-2, activated the -105/+12 construct in a -98GATA site-dependent manner. Combined transfection of GATA-1 and GATA-2 activated the promoter less than transfection of GATA-1 alone. These results suggest that GATA-1 is an activator and that GATA-2 is a relative competitive inhibitor of GATA-1 in the expression of the gp91(phox) gene in human eosinophils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.