Abstract

Eosinophil peroxidase (EPO) has been implicated in promoting oxidative tissue injury in conditions ranging from asthma and other allergic inflammatory disorders to cancer and parasitic/helminthic infections. Studies thus far on this unique peroxidase have primarily focused on its unusual substrate preference for bromide (Br(-)) and the pseudohalide thiocyanate (SCN(-)) forming potent hypohalous acids as cytotoxic oxidants. However, the ability of EPO to generate reactive nitrogen species has not yet been reported. We now demonstrate that EPO readily uses nitrite (NO(2)(-)), a major end-product of nitric oxide ((.)NO) metabolism, as substrate to generate a reactive intermediate that nitrates protein tyrosyl residues in high yield. EPO-catalyzed nitration of tyrosine occurred more readily than bromination at neutral pH, plasma levels of halides, and pathophysiologically relevant concentrations of NO(2)(-). Furthermore, EPO was significantly more effective than MPO at promoting tyrosine nitration in the presence of plasma levels of halides. Whereas recent studies suggest that MPO can also promote protein nitration through indirect oxidation of NO(2)(-) with HOCl, we found no evidence that EPO can indirectly mediate protein nitration by a similar reaction between HOBr and NO(2)(-). EPO-dependent nitration of tyrosine was modulated over a physiologically relevant range of SCN(-) concentrations and was accompanied by formation of tyrosyl radical addition products (e.g. o,o'-dityrosine, pulcherosine, trityrosine). The potential role of specific antioxidants and nucleophilic scavengers on yields of tyrosine nitration and bromination by EPO are examined. Thus, EPO may contribute to nitrotyrosine formation in inflammatory conditions characterized by recruitment and activation of eosinophils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.