Abstract
A series of eosin Y (EY)-embedded zirconium-based metal-organic frameworks (Zr-MOFs) were prepared by utilizing the synthetic encapsulating method. By virtue of effective resonant energy transfer between Zr-MOF and EY, not only does EY@Zr-MOF exhibit dual-emissive characteristics, but also the relative intensity of their double emission is greatly tuned with increasing EY loading quantity. As a consequence, the double emission of EY@Zr-MOF presented large distinctions in location and intensity. By using the relative fluorescence intensity instead of the absolute fluorescence intensity of emission peaks as detection signals, two EY@Zr-MOFs served as built-in self-calibrated fluorescence sensors to detect pesticides, where EY@Zr-MOF realized the selective detection of nitenpyram, a kind of nicotine pesticide. These results indicate that the integration of robust Zr-MOF and fluorescence molecules provides a new research platform for pesticide sensing and recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.