Abstract

The OMI instrument is an ultraviolet-visible imaging spectrograph that uses two-dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction with a 115° wide swath, which enables global daily ground coverage with high spatial resolution. This paper presents a number of examples of scientific results from the first two years in orbit, as well as a selection of in-flight radiometric, spectral and CCD detector performance and calibration results. The scientific results will show the OMI capability of measuring atmospheric phenomena with high spatial and temporal resolution. It will be shown that the OMI radiometric and spectral calibration are accurately understood. Radiation damage effects on the CCD detectors will be discussed in detail and it will be shown that it is possible to correct for the consequences to a large extent in order to minimise the impact on the scientific level-1 and level-2 data products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call