Abstract
The thermodynamic potential for nuclear matter is calculated in the 1/ N expansion of the relativistic σ-ω model. The relativistic exchange and correlation parts, which are included in the next-to-leading-order terms, are calculated at finite temperature for all thermodynamic observables. The thermodynamic consistency of the 1/ N expansion is verified in the context of thermo field dynamics and the imaginary-time path-integral formalism. The equation of state (EOS) of nuclear matter at finite density and temperature is investigated and the various contributions to the thermodynamic observables are discussed. It is emphasized that the inclusion of the higher-order terms leads to a softening of the EOS, which is important in view of empirical information from heavy-ion collisions and astrophysics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.