Abstract

The DNA-stimulated ATPase characterized in the accompanying paper is shown to be a DNA unwinding enzyme. Substrates employed were DNA, RNA hybrid duplexes and DNA-DNA partial duplexes prepared by polymerization on fd phage single-stranded DNA template. The enzyme was found to denature these duplexes in an ATP-dependent reaction, without detectably degrading. EDTA, an inhibitor of the Mg2+-requiring ATPase, was found to prevent denaturation suggesting that dephosphorylation of the ATP and not only its presence is required. These results together with those from enzyme-DNA binding studies lead to ideas regarding the mode of enzymic action. It is proposed that the enzyme binds, in an initial step, to a single-stranded part of the DNA substrate molecule and that from here, energetically supported by ATP dephosphorylation, it invades double-stranded parts separating base-paired strands by processive, zipper-like action. It is further proposed that chain separation results from the combined action of several enzyme molecules and that a tendency of the enzyme to aggregate with itself reflects a tendency of the molecules to cooperate. Various functions are conceivable for the enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call