Abstract

1. Digitonin-treated and untreated homogenates, cell extracts and washed microsomal preparations from liver of Wistar R rats are capable of transferring sugar from UDP-glucose or UDP-xylose to bilirubin. No formation of bilirubin glycosides occurred with UDP-galactose or d-glucose, d-xylose or d-glucuronic acid as the sources of sugar. 2. Procedures to assay digitonin-activated and unactivated bilirubin UDP-glucosyltransferase and bilirubin UDP-xylosyltransferase were developed. 3. In digitonin-activated microsomal preparations the transferring enzymes had the following properties. Both enzyme activities were increased 2.5-fold by pretreatment with digitonin. They were optimum at pH6.6-7.2. Michaelis-Menten kinetics were followed with respect to UDP-glucose. In contrast, double-reciprocal plots of enzyme activity against the concentration of UDP-xylose showed two intersecting straight-line sections corresponding to concentration ranges where either bilirubin monoxyloside was formed (at low UDP-xylose concentrations) or where mixtures of both the mono- and di-xyloside were synthesized (at high UDP-xylose concentrations). Both enzyme activities were stimulated by Mg(2+); Ca(2+) was slightly less, and Mn(2+) slightly more, stimulatory than Mg(2+). Of the activities found in standard assay systems containing Mg(2+), 58-78% (substrate UDP-glucose) and 0-38% (substrate UDP-xylose) were independent of added bivalent metal ion. Double-reciprocal plots of the Mg(2+)-dependent activities against the concentration of added Mg(2+) were linear. 4. In comparative experiments the relative activities of liver homogenates obtained with UDP-glucuronic acid, UDP-glucose and UDP-xylose were 1:1.5:2.7 for untreated preparations and 1:0.29:0.44 after activation with digitonin. 5. Bilirubin UDP-glucuronyltransferase was protected against denaturation by human serum albumin, whereas bilirubin UDP-xylosyltransferase was not. 6. Digitonin-treated and untreated liver homogenates from Gunn rats were inactive in transferring sugar to bilirubin from UDP-glucuronic acid (in agreement with the work of others), UDP-glucose or UDP-xylose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.