Abstract
The pathway construction and allosteric regulation of phenylalanine and tyrosine biosynthesis was examined in Neisseria gonorrhoeae. A single 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase enzyme sensitive to feedback inhibition by L-phenylalanine was found. Chorismate mutase and prephenate dehydratase appear to co-exist as catalytic components of a bifunctional enzyme, known to be present in related genera. The latter enzyme activities were both feedback inhibited by L-phenylalanine. Prephenate dehydratase was strongly activated by L-tyrosine. NAD+-linked prephenate dehydrogenase and arogenate dehydrogenase activities coeluted following ion-exchange chromatography, suggesting their identity as catalytic properties of a single broad-specificity cyclohexadienyl dehydrogenase. Each dehydrogenase activity was inhibited by 4-hydroxyphenylpyruvate, but not by L-tyrosine. Two aromatic aminotransferases were resolved, one preferring the L-phenylalanine:2-ketoglutarate substrate combination and the other preferring the L-tyrosine: 2-ketoglutarate substrate combination. Each aminotransferase was also able to transaminate prephenate. The overall picture of regulation is one in which L-tyrosine modulates L-phenylalanine synthesis via activation of prephenate dehydratase. L-Phenylalanine in turn regulates early-pathway flow through inhibition of DAHP synthase. The recent phylogenetic positioning of N. gonorrhoeae makes it a key reference organism for emerging interpretations about aromatic-pathway evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.