Abstract

Nitric oxide (NO) has recently been shown to decrease cytochrome P450 (P450) enzyme activity rapidly (< or =30 min), concentration dependently, and enzyme-selectively in the rat liver. Interestingly, among all the studied P450 enzymes, only CYP2D1 was not affected by NO donors. However, these studies were conducted using only a single concentration of the substrates, thus lacking information about the possible simultaneous changes in both maximum velocity (Vmax) and affinity (Km) of the enzymes. In the present study, we systematically evaluated the effects of NO on the enzyme kinetic parameters of marker substrates for a range of P450 enzymes, including 2D1. Livers were perfused (1 h) in the absence (control) or presence of two NO donors with different mechanisms of NO release. At the end of the perfusion, microsomes were prepared and used for kinetic analysis. Except for 2D1, NO reduced the Vmax of all the model reactions studied, although to a varying degree. However, the effects of NO donors on Km were more diverse. Whereas the Km values for testosterone 6beta-hydroxylation (3A2) and 16alpha-hydroxylation (2C11) significantly decreased, the values for chlorzoxazone 6-hydroxylation (2E1), dextromethorphan N-demethylation (3A2), and high affinity ethoxyresorufin O-dealkylation (1A1/2) significantly increased in the presence of NO donors. Furthermore, the Km values for the high-affinity component of dextromethorphan O-demethylation and benzyloxyresorufin O-dealkylation remained unchanged. These results indicate that NO can potentially change both the Vmax and Km of various substrates selectively and confirm our previous findings that the activity of CYP2D1 is not affected by NO donors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.