Abstract

With some engineering in the lab, a quartet of iron-containing heme proteins from microbes can convert inert alkenes into each possible stereoisomer of cyclopropanes, which are valuable motifs in medicinally active compounds (ACS Cent. Sci. 2018, DOI: 10.1021/acscentsci.7b00548). Previous engineered proteins needed help from an artificial cofactor to complete this feat. This work suggests that heme proteins are perfectly capable of doing this chemistry on their own. Building cyclopropanes with protein catalysts is not new, says Frances H. Arnold, the California Institute of Technology professor who led the work. However, prior heme protein catalysts made by her group and others worked best on relatively reactive alkenes. “These proteins are being commercialized, and our clients want more challenging cyclopropanations,” including transformations of unactivated alkenes, she says. So graduate student Anders M. Knight and colleagues used directed evolution, which simulates natural selection, to find promising candidates. They optimized four heme-containing proteins from

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.