Abstract

Photodynamic therapy (PDT) efficacy has been severely limited by the hypoxia in tumor microenvironment. A multitherapy modality was developed, integrating the advantages of each therapy and a nanocarrier: PDT and PDT-induced hypoxia-activated chemotherapy. Following PDT-induced hypoxia augmented in the periphery of the tumors, chemotherapy was locally activated. To this end, new indocyanine green (IR820) and a hypoxia-activated prodrug tirapazamine (TPZ) were loaded in glutathione (GSH) decomposable mesoporous organic silica nanoparticles (GMONs), tethered by hyaluronic acid (HA). This nanohybrid showed a tendency to accumulate and be retained in tumors, due to passive and active targeting. The IR820 produced singlet oxygen (1O2) under near-infrared (NIR) laser irradiation and concomitantly tumorous abnormality exacerbated hypoxia. TPZ-mediated hypoxia-activated chemotherapy acted to kill more tumor cells. In vivo results indicated that the tumor inhibition rate of dual-loaded nanohybrids was up to 76% under NIR laser irradiation. The immunofluorescence staining of tumor slices demonstrated that the superficial part of tumors experienced exacerbated hypoxia with laser irradiation, resulting in TPZ exerting powerful chemotherapy effects. This nanohybrid is expected to be valuable as spatiotemporally specific therapy for cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call