Abstract

Combination treatments are more effective than conventional monotherapy in combating cancer. Herein, a multifunctional prodrug BDP-L-CPT was rationally engineered and prepared by the conjugation of a boron dipyrromethene (BDP)-based photosensitizer (PS) to the active site of the chemotherapeutic drug camptothecin (CPT) via a phenyl benzoate group. After modification, the cytotoxicity of CPT was locked. Moreover, the fluorescence emission at 430 nm from the CPT component in the prodrug was substantially inhibited through the intramolecular fluorescence resonance energy transfer process. The phenyl benzoate linker in BDP-L-CPT could be selectively cleaved by exogenous carboxylesterase in phosphate-buffered saline solution and endogenous carboxylesterase overexpressed in cancer cells, which was followed by self-immolation to release free CPT. The drug release process could be monitored by the turn-on of CPT fluorescence in solution and cells. Owing to the combination of site-specific chemotherapy with light-driven photodynamic therapy, the IC50 values of the prodrug BDP-L-CPT against HepG2 human hepatocellular carcinoma and HeLa human cervical carcinoma cells were lower than those of the controls, BDP-COOH and CPT. The combined antitumor effects of the prodrug BDP-L-CPT were also observed in the mice bearing H22 tumors. Furthermore, BDP-L-CPT had a more prolonged blood circulation time in mice than CPT, which is beneficial to persistent therapy. This study may provide a promising strategy for a selective combination cancer treatment by conjugating a prodrug to a PS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call