Abstract
Oral health is an essential part of overall health. Matrix metalloproteinase-2 (MMP-2) is a potential biomarker for diseases. The ability to accurately detect MMP-2 in vivo and in vitro is of great importance for the early diagnosis and prognosis, as well as the treatment evaluation, of oral diseases. In this study, cyanine 3 (Cy3) polypeptide containing the specific peptide substrate (PLGVR) of MMP-2 was modified onto SiO2-coated upconversion nanoparticles to fabricate a fluorescence resonance energy transfer (FRET)-based ratiometric fluorescent nanoplatform (UCNPs@SiO2@Cy3-pep). The green upconversion luminescence of UCNPs@SiO2 is quenched by Cy3, while its red upconversion luminescence is undisturbed. After Cy3 is cleaved at the PLGVR peptide by MMP-2, it is detached from the surface of UCNPs@SiO2, resulting in the recovery of green luminescence. Based on this principle, we applied UCNPs@SiO2@Cy3-pep to detect MMP-2 activity in different oral disease samples and models. We found that the level of MMP-2 in saliva of patients with oral cancer was 10 times higher than that of healthy individuals. In addition, the MMP-2 level in patients with periodontitis and severe dental caries also increased to varying degrees compared with that in healthy patients. Finally, in vitro and in vivo imaging experiments revealed that the nanoplatform was effective in monitoring MMP-2 level. Together, the developed nanoplatform can be an ideal tool for medical diagnosis of MMP-2-related diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.