Abstract
BackgroundEnzyme dynamics has recently been shown to be crucial for structure-function relationship. Among various structure dynamics analysis platforms, HDX (hydrogen deuterium exchange) mass spectrometry stands out as an efficient and high-throughput way to analyze protein dynamics upon ligand binding. Despite the potential, limited research has employed the HDX mass spec platform to probe regional structure dynamics of enzymes. In particular, the technique has never been used for analyzing cell wall degrading enzymes. We hereby used xylanase as a model to explore the potential of HDX mass spectrometry for studying cell wall degrading enzymes.ResultsHDX mass spectrometry revealed significant intrinsic dynamics for the xylanase enzyme. Different regions of the enzymes are differentially stabilized in the apo enzyme. The comparison of substrate-binding enzymes revealed that xylohexaose can significantly stabilize the enzyme. Several regions including those near the reaction centres were significantly stabilized during the xylohexaose binding. As compared to xylohexaose, xylan induced relatively less protection in the enzyme, which may be due to the insolubility of the substrate. The structure relevance of the enzyme dynamics was discussed with reference to the three dimensional structure of the enzyme. HDX mass spectrometry revealed strong dynamics-function relevance and such relevance can be explored for the future enzyme improvement.ConclusionLigand-binding can lead to the significant stabilization at both regional and global level for enzymes like xylanase. HDX mass spectrometry is a powerful high-throughput platform to identify the key regions protected during the ligand binding and to explore the molecular mechanisms of the enzyme function. The HDX mass spectrometry analysis of cell wall degrading enzymes has provided a novel platform to guide the rational design of enzymes.
Highlights
Enzyme dynamics has recently been shown to be crucial for structure-function relationship
HDX mass spectrometry has been broadly applied to study protein dynamics and structure, in for the protein binding with ligands, substrates, DNA and other molecules [23,24,25,26,27]
Overall, HDX analysis has revealed significant intrinsic dynamics for xylanase enzyme and such dynamics might be important for the enzyme function
Summary
Enzyme dynamics has recently been shown to be crucial for structure-function relationship. Novel HDX mass spectrometry platforms provide the structure dynamics information for enzyme engineering [15,16]. HDX mass spectrometry has been broadly applied to study protein dynamics and structure, in for the protein binding with ligands, substrates, DNA and other molecules [23,24,25,26,27]. Such analysis has enabled the illustration of the enzyme substrate interaction mechanism and the protein binding molecular determinants [28,29]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.