Abstract

In this study, we prepared a smart polymeric vehicle for the hydrophobic drug paclitaxel (PTX) that allowed a maximum steady-state circulation and a fast intracellular release in tumors. PTX was linked to the Janus PEGylated (PEG = poly(ethylene glycol)) peptide dendrimer via an enzyme-sensitive linker glycylphenylalanylleucylglycine tetrapeptide by efficient click reaction, resulting in Janus dendritic prodrug with 20.9% PTX content. The prodrug self-assembled into nanoscale particles with appropriate nanosizes, compact morphology, and negative surface charge. In addition to high stability during circulation, as demonstrated by protein adsorption assays and drug release studies in the cancer's intracellular environment, the nanoparticles were able to quickly release the drug intact in its original molecular structure, as verified via high-performance liquid chromatography and mass spectrometry analyses. Compared to free PTX, the enzyme-responsive feature of nanoparticles promoted higher cytotoxicity against 4T1 cancer cells and much lower cytotoxicity against normal cells. The nanoparticles accumulated in the tumor and were retained for an extended period of time, as confirmed by fluorescence imaging. Therefore, these nanoparticles exhibited significantly enhanced antitumor efficiency in the 4T1 breast cancer model as indicated by the observed inhibition of angiogenesis and proliferation as well as induction of apoptosis. Moreover, the nanoparticles reduced the occurrence of side effects, particularly dose-limited toxicities, as monitored by body weight and hematological features. Hence, our Janus PEGylated dendrimer-PTX prodrug-based nanoparticles may potentially serve as nanoscale vehicles for breast cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call