Abstract
Antimicrobial resistance (AMR) poses a significant global health challenge, leading to the ineffectiveness of numerous conventional antibiotics against various bacterial infections. Hence the rapid detection and identification of pathogenic bacteria are imperative for managing AMR and implementing suitable treatment approaches. To improve rapid detection, a biopolymer-based autonomously reporting enzyme-sensitive biopolymer material has been developed for detecting β-glucuronidase (β-Gus) from pathogenic E. coli. In the presence of enzyme β-Gus a blue-colored fluorophore is released from functionalized electrospun chitosan-polyethylene oxide nanofibers, which is monitored via fluorescence spectroscopy. The nanofibers exhibited a 3.4 times enhanced sensitivity compared to neat hydrogels and also to related chromogenic sensing materials. For an observation time of 60 minutes, a limit of detection (LOD) for β-Gus was determined to be 4.7 nM. This nanofiber sensing substrate was then studied with the pathogenic E. coli strain NCTC 10418, showing a three times greater sensitivity compared to the hydrogel substrate. These results are attributed to a larger surface to volume ratio of the electrospun chitosan nanofibers compared to the neat swollen hydrogel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.