Abstract

Enzyme-instructed self-assembly is an increasingly attractive topic owing to its broad applications in biomaterials and biomedicine. In this work, we report an approach to construct enzyme-responsive aqueous surfactant two-phase (ASTP) systems serving as enzyme substrates by using a cationic surfactant (myristoylcholine chloride) and a series of anionic surfactants. Driven by the hydrophobic interaction and electrostatic attraction, self-assemblies of cationic-anionic surfactant mixtures result in biphasic systems containing condensed lamellar structures and coexisting dilute solutions, which turn into homogeneous aqueous phases in the presence of hydrolase (cholinesterase). The enzyme-sensitive ASTP systems reported in this work highlight potential applications in the active control of biomolecular enrichment/release and visual detection of cholinesterase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.