Abstract

Despite all its advantages and potential, cross-linking enzyme aggregate (CLEA) technology is still not applied at an industrial scale for enzyme insolubilization for bioremediation purposes. In this study, the enzyme polymer engineered structure (EPES) method was used to enhance CLEA stability and reuse. A crude laccase from Trametes hirsuta was successfully insolubilized to form EPES-CLEAs. The polymeric network provided excellent stability (> 90%) to CLEAs after a 24-h incubation in a non-buffered municipal wastewater effluent (WW), and the biocatalysts were recycled using a centrifugation process. While CLEAs activity dropped to 17%, EPES-CLEAs showed a laccase activity retention of 67% after five cycles of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) oxidation. After 8 h of treatment in WW, the EPES-CLEAs were equally as effective in removing cannabidiol (CBD) as the free-LAC (~ 37%). This research demonstrates that the EPES method is a promising alternative for CLEA stabilization and reuse in environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.