Abstract

Electrochemical sensors represent a powerful tool for real-time measurement of a variety of analytes of much significance to different areas, ranging from clinical diagnostics to food technology. Point-of-care devices which can be used at patient bedside or for online monitoring of critical parameters are of great importance in clinical daily routine. In this work, portable, low-cost electrochemical sensors for a fast and reliable detection of the clinically relevant analyte urea have been developed. The intrinsic pH sensitivity of reduced graphene oxide (rGO)-based field-effect transistors (FETs) was exploited to monitor the enzymatic hydrolysis of urea. The functionalization of the sensor platform using the layer-by-layer technique is especially advantageous for the immobilization of the biorecognition element provided that this approach preserves the enzyme integrity as well as the rGO surface. The great selectivity of the enzyme (urease) combined with the high sensitivity of rGO-based FETs result in the construction of urea biosensors with a limit of detection (LOD) of 1μM and a linear range up to 1mM. Quantification of Cu2+ with a LOD down to 10nM was performed by taking advantage of the specific inhibition of urease in the presence of heavy metals. These versatile biosensors offer great possibilities for further development of highly sensitive enzyme-based FETs for real-time, label-free detection of a wide variety of clinically relevant analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.