Abstract

Highly sensitive and accurate detection of chloramphenicol is of paramount importance for food safety. Herein, an enzyme-modulated photothermal immunosensor that uses a self-calibrated thermal imaging system (SCTIS) as signal read-out was developed for detecting chloramphenicol. In this immunosensor, alkaline phosphatase was used as a modulator of the photothermal conversion. It could hydrolyze the substrate into ascorbic acid, thereby reducing oxidized 3,3′,5,5′-tetramethylbenzidine, which exhibited a near-infrared laser-driven photothermal effect. For precise temperature measurement, the SCTIS was designed by using the temperature compensation of a ceramic chip to enable real-time self-calibration of the temperature. This SCTIS-based immunosensor could detect chloramphenicol with a LOD of 9 pg/mL in 2 h, and relative standard derivations from 3.95% to 13.58%. The average recoveries in milk and egg samples ranged from 76% to 114%. This versatile sensing strategy can detect various targets by altering recognition elements, thus has wide applicability in food safety testing and monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call