Abstract

In view of the potential hazards of organophosphorus pesticides (OPs), this paper constructed a ratiometric fluorescent probe utilizing a functionalized metal-organic framework to detect OPs. Ru(bpy)3Cl2 was encapsulated inside UiO-66 as a reference signal, and MnO2 nanosheets (MnO2 NSs) were grown on the surface to obtain Ru@UiO-66@MnO2 NSs. Acetylcholinesterase catalyzed the decomposition of acetylcholine into reductive thiocholine, which consumed MnO2 NSs, thus restoring the Ru@UiO-66 fluorescence. Due to the enzymatic inhibition of OPs and the redox reaction between MnO2 NSs and thiamine, this probe emitted blue fluorescence in the presence of OPs. The probe achieved linear responses to dichlorvos and chlorpyrifos with LODs of 9.99×10-6 μg mL-1 and 9.99×10-5 μg mL-1. The probe exhibited a satisfactory recovery rate for OPs in green tea. Furthermore, a hydrogel detection platform was developed by embedding the probe into sodium alginate. Overall, this work provides a visual approach to detect OPs in agricultural products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.