Abstract
It is generally recognized that phenol-containing molecules mainly undergo phase II metabolic reactions, whereas glucuronide and sulfate are conjugated to form water-soluble products. Here, we report direct reactions of phenolic pollutants (triclosan, alkylphenol, bisphenol A [BPA], and its analogues) and some endogenous metabolites (vitamin E [VE] and estradiol) to generate new lipophilic ether products (e.g., BPA-O-VEs and alkylphenol-O-estradiol). A nontargeted screening strategy was used to identify the products in human liver microsome incubations, and the most abundant products (BPA-O-VEs) were confirmed via in vivo exposure in mice. BPA-O-VEs were frequently detected in sera from the general population at levels comparable to those of glucuronide/sulfate-conjugated BPA. Recombinant human cytochrome P450s were applied to find that CYP3A4 catalyzed the formation of these newly discovered ether metabolites by linking the VE hydroxyl group to the BPA phenolic ring, leading to the significantly reduced antioxidative activities of BPA-O-VEs compared to VEs. The effects of the reaction on the homeostasis of reacted biomolecules were finally assessed by in vitro assay and in vivo mice exposures. The generation of BPA-O-VEs decreased the VE concentrations and increased the reactive oxygen species generation after exposure to BPA at environmentally relevant concentrations. The identified reactions provided an overlooked metabolic disruption pathway for phenolic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.