Abstract
Biomolecular self-assembly provides a potential way for the design and synthesis of functional biomaterials with uniform structure and unique properties, in which the self-assembly of peptide molecules is especially important ascribed to the controllable structural design and functional tailoring of peptide motifs. The self-assembly of peptides can be instructed by internal and external physical, chemical, and biological stimulations. Compared to both physical and chemical stimulations including light/thermal treatment, pH/ionic strength adjustment, and others, the biological mediation with enzymes exhibited great advantages due to its high bioactivity, excellent biocompatibility, high specificity, and in vivo reaction. Herein we summarize the advance in the enzyme-instructed peptide self-assembly for biomedical applications. For this aim, we introduce and discuss the self-assembly of peptide that controlled by both kinetics and dynamics, and then demonstrate the enzyme-induced preparation of peptide nanostructures such as nanofibers, nanotubes, vesicles, networks, and hydrogels. Finally, the biomedical applications of enzyme-induced self-assembled peptide nanomaterials for cancer diagnostics, cancer therapy, bioelectronic devices, and biosensors are presented. It is expected this work will inspire more studies on the using of bioactive enzymes for triggering the self-assembly of peptides to create various novel bionanomaterials, which could extend this interesting research field to others such as tissue engineering, biocatalysis, energy storage, and environmental science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.