Abstract

Dexmedetomidine is useful during mapping of epileptic foci as it facilitates electrocorticography unlike most other anesthetic agents. Patients with seizure disorders taking enzyme-inducing anticonvulsants appear to be resistant to its sedative effects. The objective of the study was to compare the pharmacokinetic and pharmacodynamic profile of dexmedetomidine in healthy volunteers with volunteers with seizure disorders receiving enzyme-inducing anticonvulsant medications. Dexmedetomidine was administered using a step-wise, computer-controlled infusion to healthy volunteers (n = 8) and volunteers with seizure disorders (n = 8) taking phenytoin or carbamazapine. Sedation and dexmedetomidine plasma levels were assessed at baseline, during the infusion steps, and after discontinuation of the infusion. Sedation was assessed by using the Observer's Assessment of Alertness/Sedation Scale, Ramsay Sedation Scale, and Visual Analog Scale and processed electroencephalography (entropy) monitoring. Pharmacokinetic analysis was performed on both groups, and differences between groups were determined using the standard two-stage approach. A two-compartment model was fit to dexmedetomidine concentration-time data. Dexmedetomidine plasma clearance was 43% higher in the seizure group compared with the control group (42.7 vs. 29.9 l/h; P = 0.007). In contrast, distributional clearance and the volume of distribution of the central and peripheral compartments were similar between the groups. No difference in sedation was detected between the two groups during a controlled range of target plasma concentrations. This study demonstrates that subjects with seizure disorders taking enzyme-inducing anticonvulsant medications have an increased plasma clearance of dexmedetomidine as compared with healthy control subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.