Abstract

Sodium dodecyl sulfate (SDS)-chitosan hydrogels have been employed for adsorption of anionic dyes and metallic substances. Two mutant forms of Thermoanaerobacter ethanolicus alcohol dehydrogenase (TeSADH) were used as model enzymes to develop a novel enzyme immobilization technique employing newly formulated porous chitosan hydrogels. The enzyme immobilized on chitosan hydrogel capsules formed by 5g/l SDS gelation and subsequent treatment with 0.05M NaOH was 28-35% higher in NADPH production than that formed by 20g/l SDS gelation only under the same conditions. A 48-h asymmetric biphasic reduction of acetophenone with immobilized TeSADH enzyme at 50 °C showed 68% increase in (R)-1-phenylethanol production than the free enzyme. Compared to the free enzyme which denatured and lost its activity at 80 °C, the immobilized enzyme retained about 25% of its initial activity after 2-h incubation. In contrast to the conventional chitosan hydrogel which suffers thermal and operational stability, the newly formulated porous chitosan hydrogel capsules have excellent enzyme loading efficiency and stable at harsh temperatures. Especially, this newly developed enzyme immobilization method would be applicable for food processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.