Abstract

An isothermal, enzyme-free and ultrasensitive protocol for electrochemical detection of DNA is proposed based on the ingenious combination of target catalyzed hairpin assembly and hybridization chain reaction (HCR) strategies for two-step signal amplification. The DNA hairpin assembly on the electrode is triggered by target DNA, accompanied by the release of target DNA for the successive hybridization and assembly process. The newly emerging DNA fragment on the electrode after hairpin assembly is further used to propagate the HCR between methylene blue-labeled signal probe and auxiliary probe, inducing a remarkably amplified electrochemical signal. The current dual signal amplification strategy is relatively simple and inexpensive owing to avoid the use of any kind of enzyme or sophisticated equipment. It can achieve a sensitivity of 0.1fM with a wide linear dynamic range from 1×10−15 to 1×10−10M and discriminate mismatched DNA from perfect matched target DNA with a high selectivity. The high sensitivity and selectivity make this method a great potential for early diagnosis in gene-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.