Abstract

MicroRNAs (miRNAs) have been shown to be promising biomarkers for disease diagnostics and therapeutics. However, the rapid, low-cost, sensitive, and selective detection of miRNAs remains a challenge because of their characters of small size, vulnerability to degradation, low abundance, and sequence similarity. Herein, we describe an enzyme-free amplification platform, consisting of a catalytic hairpin assembly (CHA) and DNA-templated silver nanoclusters (DNA/AgNCs), for miRNA analysis. In this work, two DNA hairpins (H1 and H2) were first designed for target miR-21-induced CHA, and then the fluorescence of DNA/AgNCs was quenched by BHQ1 to construct an activatable probe (AP). In the presence of target miR-21, hairpin H1 was opened by miR-21 through a hybridization reaction, and hairpin H2 was then opened by H1. During this process, miR-21 was released from H1 and participated in the next round of hybridization, triggering the CHA cycle reaction. The obtained H1-H2 products with sticky ends could react with the AP, forcing BHQ1 away from the DNA/AgNCs and thus causing the fluorescence recovery of the DNA/AgNCs. The assay for miR-21 detection demonstrated an excellent linear response to concentrations varying from 200 pM to 20 nM with the detection limit of 200 pM. The simple and cost-effective strategy holds great potential for application in biomedical research and clinical diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.