Abstract
Functioning as a flavoprotein, choline oxidase facilitates the transformation of choline into glycine betaine. Notably, choline oxidase and its resultant product, glycine betaine, find extensive applications across various industries and fields of study. However, its high sensitivity and tendency to lose functional activity at high temperatures reduces its industrial usage. MD simulation and mutation studies have revealed the role of certain residues responsible for the enzyme’s thermal instability. This study focuses on inducing thermal stability to choline oxidase of A. globiformis through computational approaches at a maximum temperature of 60 °C. MD simulation analysis showed that Trp 331, Val 464 and Ser 101 contribute to structural instability, leading to the instability at 60 °C. Mutation of these residues with phenylalanine residues and simulation of the mutated enzyme at 60 °C exhibited thermostability and insignificant residual fluctuation. The re-docking and MM/GBSA analyses further validated the mutated enzyme’s binding affinity and catalytic activity. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.