Abstract

The agglomeration of metal–organic frameworks (MOFs) has long been a problem, and achieving stable monodispersity in water remains a great challenge. This paper reports a universal strategy that functionalizes MOFs by using an endogenous bioenzyme namely glucose oxidase (GOx), to achieve stable water monodispersity, and integrates it as a highly efficient nanoplatform for cancer synergistic therapy. Phenolic hydroxyl groups in GOx chain confers robust coordination interactions with MOFs, which not only endows stable monodispersion in water, but also provides many reactive sites for further modification. Silver nanoparticles are uniformly deposited onto MOFs@GOx to achieve high conversion efficiency from near-infrared light to heat, resulting in an effective starvation and photothermal synergistic therapy model. In vitro and in vivo experiments confirm excellent therapeutic effect at very low doses without using any chemotherapeutics. In addition, the nanoplatform generates large amounts of reactive oxygen species, induces heavy cell apoptosis, and demonstrates the first experimental example to effectively inhibit cancer migration. Our universal strategy enables stable monodispersity of various MOFs via GOx functionalization and establishes a non-invasive platform for efficient cancer synergistic therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.