Abstract

Reported is an unanticipated mechanism of attractive electrostatic interactions of fully neutralized polyacrylic acid (PAA) with like-charged surfactants. Amphiphilic polymer-surfactant complexes with high interfacial activity and a solubilization capacity exceeding that of conventional micelles are formed by bridging with Ca2+ ions. Incorporation of a protease into such dynamic nanoreactors results in a synergistically enhanced cleaning performance because of the improved solubilization of poorly water-soluble immobilized proteins. Competitive interfacial and intermolecular interactions on different time- and length-scales have been resolved using colorimetric analysis, dynamic tensiometry, light scattering, and molecular dynamic simulations. The discovered bridging association mechanism suggests reengineering of surfactant/polymer/enzyme formulations of modern detergents and opens new opportunities in advancing labile delivery systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.