Abstract

Bio-based commercially available succinate, itaconate and 1,4-butanediol are enzymatically co-polymerized in solution via a two-stage method, using Candida antarctica Lipase B (CALB, in immobilized form as Novozyme® 435) as the biocatalyst. The chemical structures of the obtained products, poly(butylene succinate) (PBS) and poly(butylene succinate-co-itaconate) (PBSI), are confirmed by 1H- and 13C-NMR. The effects of the reaction conditions on the CALB-catalyzed synthesis of PBSI are fully investigated, and the optimal polymerization conditions are obtained. With the established method, PBSI with tunable compositions and satisfying reaction yields is produced. The 1H-NMR results confirm that carbon-carbon double bonds are well preserved in PBSI. The differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results indicate that the amount of itaconate in the co-polyesters has no obvious effects on the glass-transition temperature and the thermal stability of PBS and PBSI, but has significant effects on the melting temperature.

Highlights

  • Utilizing renewable resources for the replacement of depleting fossil stocks is an appealing research topic, both in the academic and industrial areas [1,2,3,4,5]

  • We found that the amount of itaconate composed in the co-polyesters has no obvious effects on the Tg and the thermal stability of poly(butylene succinate-co-itaconate) (PBSI)

  • It is a totally green approach toward unsaturated aliphatic polyesters, since all the building blocks and catalysts are generated from renewable resources

Read more

Summary

Introduction

Utilizing renewable resources for the replacement of depleting fossil stocks is an appealing research topic, both in the academic and industrial areas [1,2,3,4,5]. As abundant carbon-neutral renewable resources, biomass stocks are generated directly from solar energy in a short cycle. A great number of monomers and macromonomers can be produced from biomass stocks by natural biological activities or chemical modifications [6,7]. These bio-based monomers provide numerous opportunities for the synthesis of green and novel polymers. Unsaturated polyesters are widely used as thermosetting resins in various industrial areas [8,9,10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.