Abstract

Compartmentalization is a crucial natural methodology to enable multiple biocatalytic transformations to proceed efficiently. Herein, we report a biocompatible multicompartmental colloidal motor that can achieve autonomous movement in the biological environment through two-enzyme cascade reactions of immobilized enzymes. The colloidal motors with the heterogeneous multicompartment structure were prepared in one step by microfluidic technology, and the compartmentalized encapsulation of glucose oxidase (GOD) and catalase (CAT) was realized. The fabricated colloidal motor was size controllable by tuning the flow rates of the microfluidic system, and its autonomous movement can be triggered by good responsiveness to the alkaline environment. In glucose medium of pH 7.5, the pH-responsive alginate cores of the colloidal motor swell to facilitate fuel penetration and enzyme-catalyzed reactions. The enzyme cascade between GOD and CAT immobilized in the colloidal motor chamber results in the self-propulsion of the colloid motor in glucose medium. The compartmentalized encapsulation of immobilized enzyme improves the stability of the enzyme and enables multicompartmental colloidal motors to self-propel in an alkaline intestinal environment through an enzyme cascade reaction. These features indicate that such multicompartmental colloidal motors actuated by enzyme cascade reaction in biocompatible fuel have great potential for co-encapsulation and autonomous movement in different applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.