Abstract

Epoxides are widely used chemicals, the determination of which is of paramount importance. Herein, we present an enzyme-based approach for noninstrumental detection of epoxides in standard solution and environmental samples. Halohydrin dehalogenase (HheC) as a biological recognition element and epichlorohydrin as a model analyte were evaluated for sensing. The detection is based on the color change of the pH indicator dye bromothymol blue caused by the HheC-catalyzed ring-opening of the epoxide substrate. The color change is then exploited for the determination of epoxide using a smartphone as an image acquisition and data processing device, eliminating the need for computer-based image analysis software. The color parameters were systematically evaluated to determine the optimum quantitative analytical parameter. Under optimal conditions, the proposed enzyme-based detection system showed a linear range of 0.13-2mM with a detection limit of 0.07mM and an assay time of 8Min. In addition, the repeatability expressed as relative standard deviation was found to be below 5% (n=6). Validation with gas chromatographic analyses showed that the proposed enzyme-based epoxide detection could be an alternative way in the quantitative determination of epoxides, and particularly useful in resource-limited settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.