Abstract

Rose bengal, a xanthene derivative among the most efficient producer of singlet oxygen, was submitted to a chemical modification consisting in the introduction of an acetate group into the aromatic ring fluorophore structure. The acetate group acts as a quencher, thus inactivating both fluorescence and photosensitization properties of the molecule. In the modified structure, rose bengal acts as a fluorogenic substrate giving rise to the cellular reaction termed fluorochromasia. The acetate group is recognized by a carboxylic esterase activity that splits it. Removal of the quencher group results in restoring the native structure of photosensitizer inside the cells. The intracellular turnover of rose bengal acetate was studied in rat glioma-derived cultures cells, in terms of the balance of the processes of influx and enzyme hydrolysis of the fluorogenic substrate, and of the efflux of the fluorescent product. A large intracellular accumulation of photosensitizer is obtained when treatments are performed with the fluorogenic substrate, even at the drug concentration at which rose bengal does not enter the cells. The intracellular localization allows rose bengal to exert a more effective photosensitization effect. Provided that the quencher group is selected according to the metabolic properties of the tumor cells, the use of fluorogenic substrates as photosensitizer precursors could improve fluorescence diagnosis and the photodynamic therapy of tumors, exploiting the biological properties that distinguish pathological from normal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.