Abstract

The present study is about the enzymatic modification of thermomechanical pulp (TMP) fibers for reduction of water uptake and their use in bio-based filaments for 3D printing. Additionally, TMP was used as a fiber reinforcing material and poly(lactic acid) (PLA) as the polymer matrix. The hydrophilic TMP fibers were treated via laccase-assisted grafting of octyl gallate (OG) or lauryl gallate (LG) onto the fiber surface. The modified TMP fibers showed remarkable hydrophobic properties, as demonstrated by water contact angle measurements. Filaments reinforced with OG-treated fibers exhibited the lowest water absorption and the best interfacial adhesion with the PLA matrix. Such higher chemical compatibility between the OG-treated fibers and the PLA enabled better stress transfer from the matrix to the fibers during mechanical testing, which led to the manufacture of strong filaments for 3D printing. All of the manufactured filaments were 3D-printable, although the filaments containing OG-treated fibers yie...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call