Abstract
Cellular spheroids have been received much attention in the biological and biomedical fields, especially as a base material for drug assays, regenerative medicine, and tissue engineering. Hydrogels have potential for scalable preparation of spheroids because they provide a spatial environment suitable for three-dimensional cell cultivation. Herein, the potential use of a redox-responsive hydrogel as a scaffold for preparation and recovery of spheroids is reported. A hydrogel composed of poly(ethylene glycol) (PEG), which can be degraded using cysteine as a reducing agent under mild conditions, is prepared by mixing an octa-thiolated PEG derivative (8-arm PEG-SH), horseradish peroxidase and a small phenolic compound (Glycyl-L-tyrosine). Human hepatocellular carcinoma cells (HepG2) are encapsulated in the hydrogel and cellular spheroids formed by proliferation within the scaffolds. After seven days of cultivation, the size of the HepG2 spheroids reached a diameter between ≈40 and 60 μm, depending on the 8-arm PEG-SH concentration. Liver-specific functions of the HepG2 spheroids such as albumin secretion and urea production are retained at higher levels than those of cells prepared from traditional two-dimensional mono layers. These results suggest that the system presented here has potential for preparation of cellular spheroids for tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.