Abstract

The aim of present paper was to investigate the prospect for the use of food waste, an important municipal waste, as a potential substrate to generate hydrolysates for fuel ethanol production. The critical variables that affected reducing sugar production from food waste were identified by Plackett–Burman design (glucoamylase loud, time, temperature and pH) and further optimized by using a four factor central composite design of response surface methodology. According to the results of response surface analysis, the optimum conditions for reducing sugar production were determined to be glucoamylase loud of 142.2 u/g, saccharification pH of 4.82, enzyme reaction temperature of 55 °C, enzyme reaction time of 2.48 h. Reducing sugar production (164.8 g/L) in the optimized condition was in good agreement with the value predicted by the quadratic model (164.3 g/L), thereby confirming its validity. Furthermore, the obtained liquid phase of food waste hydrolysate was utilized for production of ethanol by using Saccharomyces cerevisiae H058 fermentation. In order to develop an economical process for transforming food waste hydrolysates to ethanol, non-sterilized and sterilized processes were compared in the experiments. The result shows non-sterilized fermentation without undergoing heat treatment was better due to the unspoiled nutrients inside. These results helped to find the effective strategies to utilize food waste for ethanol production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call